

Introducing Physical Geography

Alan Strahler

Chapter 1
 The Earth as a Rotating Planet

The Earth as a Rotating Planet

Chapter 1

Chapter Outline

1. The Shape of the Earth
2. Earth Rotation
3. The Geographic Grid
4. Map Projections
5. Global Time
6. The Earth's Revolution around the Sun

1. The Shape of the Earth

Polar - 12,714 km

Earth's shape - close to spherical.
Actually oblate ellipsoid (flattened at the poles)

1. The Shape of the Earth

1. The Shape of the Earth

Exaggerated geoid, in which small departures from a sphere are shown as very large deviations.

2. Earth Rotation

THE ENVIRONMENTAL EFFECT OF EARTH ROTATION

THE ENVIRONMENTAL EFFECT OF EARTH ROTATION

Rhythms of the Sun cause:
Day \& night
Daily air temperature cycle
Motions of atmosphere and oceans
Weather systems and ocean currents
Earth's rotation + Moon's gravitational pull rise and fall of tides. Tidal currents - lifegiving pulse for plants \& animals, clock for human coastal activities

2. Earth Rotation

Earth's Rotation -

A) counterclockwise when viewed from above the north pole
B) West to east when viewed with the north pole up

3. The Geographic Grid

PARALLELS AND MERIDIANS

LATITUDE AND LONGITUDE

3. The Geographic Grid

Geographic Grid - the way to depict the globe on a flat surface.
Divided into degrees, 60 minutes and 60 seconds.
Provides a "grid" of imaginary lines (parallels and meridians).

Longest parallel of latitude is the Equator, midway between the poles.
Equator used as reference line for measuring position.

PARALLELS AND MERIDIANS

Meridians and parallels define geographic directions.

- Meridian - north or south
- Parallel - east or west.
- Infinite number of parallels \& meridians.

Every point on the Earth has a combination of one parallel and one meridian, defined by the intersection.

LATITUDE AND LONGITUDE

Latitude (Parallels)

1 degree latitude = constant 111 km

3. The Geographic Grid

LATITUDE AND LONGITUDE

Longitude (Meridians)
1 degree of longitude $=111 \mathrm{~km}$ at the equator and 0 at the poles

3. The Geographic Grid

LATITUDE AND LONGITUDE

A. Latitude is the angle between a point on a parallel and the centre of the Earth and a point on the equator

B. Longitude is the angle between a point on a meridian at the Equator (P) and a point on the prime meridian at the Equator (Q) as measured at the Earth's center.

LATITUDE AND LONGITUDE

Prime Meridian at the Royal Observatory in Greenwich, England

3. The Geographic Grid

4. Map Projections

POLAR PROJECTION

MERCATOR PROJECTION

WINKEL TRIPEL PROJECTION

GEOGRAPHIC INFORMATION SYSTEMS

4. Map Projections

Map Projection - how to display the Earth's surface.

Oldest maps were limited by a lack of knowledge of the world, rather than by difficulties caused by the Earth's curvature.

POLAR PROJECTION

Polar projection centered on North or the South Pole.

- Parallels centered on the pole
- Meridians radiate outward from pole
- Show s one hemisphere, equator at outer edge of the map.
- Intersections of the parallels \& meridians form right angles, projection shows the true shapes

MERCATOR PROJECTION

Mercator projection shows a line of constant compass bearing as a straight line - Used to display directional features such as wind direction.

Belgian cartographer, Gerardus Mercator, 16 th century

MERCATOR PROJECTION

WINKEL TRIPEL PROJECTION

Winkel Tripel -
 - Minimizes distortion in area,

Cirrocumulus - high, patchy, globular
-Oswald Winkel (1873-1953)

GEOGRAPHIC INFORMATION SYSTEMS

GIS - Geographic Information Systems or Geographic Information Science

Computer based mapping and analytical ability provided by complex software.
-Maps, diagrams, satellite images and aerial photographs can be stored and manipulated
-Geographic spatially referenced data
-Spatially-referenced data used to solve complex problems.

5. Global Time

STANDARD TIME

WORLD TIME ZONES

INTERNATIONAL DATE LINE

DAYLIGHT SAVING TIME

PRECISE TIMEKEEPING

5. Global Time

Standard time system -

 global time kept according to adjacent standard meridians, normally differ by one hour.-Based on the east-west position of the Sun -Solar day defined by one sun circuit

5. Global Time

A. The outer ring gives the time in hours.
B. The meridians are drawn as spokes radiating out from the pole.
C. Greenwich, England, 0° longitude, 12:00 noon.
D. Los Angeles, about $120^{\circ} \mathrm{W}$ longitude, 4:00 A.M.
E. New York, about $75^{\circ} \mathrm{W}$ longitude, 7:00 A.M.

F. Singapore, about $105^{\circ} \mathrm{E}$ longitude, 7:00 P.M.

5. Global Time

Time is determined by longitude, not latitude.

- When it is noon in Chicago, it is 1:00 P.M. in New York and only 10:00 A.M. in Portland.
- Mobile, 1600 km (1000 mi) away, it is also noon.

STANDARD TIME

Standard time system, global time according to nearby standard meridians, normally one hour from each other.

WORLD TIME ZONES

Crossing the international date line in an eastward direction, travelers set their calendars back one day.

INTERNATIONAL DATE LINE

International Dateline - 12 hours from Prime Meridian.

- Opposite side of globe or 180 degrees (180th meridian)
- Earth rotates 15° per hour, time zones differ by 1 hour $\left(360^{\circ} / 15^{\circ}=\right.$ 24 hours)
-Date changes either side of line

5. Global Time

DAYLIGHT SAVING TIME

Daylight saving - transfer an hour of light to a time when it will be more useful. Adjust clocks during the part of the year that has a longer daylight period to correspond more closely with the modern pace of society

- United States - daylight saving time begins second Sunday in March, ends first Sunday of November
- European Union daylight saving = summer time begins last Sunday in March, ends on the last Sunday in October.

PRECISE TIMEKEEPING

Precise timekeeping - worldwide system of master atomic clocks measures time to better than one part in 1,000,000,000,000.

- Earth has small changes in the angular velocity of its rotation on its axis and variations in the time it takes to complete one circuit around the Sun
- Adjustments to the timekeeping system are necessary.
- Legal time standard recognized by all nations is coordinated universal time, Bureau International de l'Heure, located near Paris

6. The Earth's Revolution around the Sun

MOTIONS OF THE MOON

TILT OF THE EARTH'S AXIS

THE FOUR SEASONS

EQUINOX CONDITIONS

SOLSTICE CONDITIONS

6. The Earth's Revolution around the Sun

Revolution

- Circle around the Sun (356 days)
- From north pole in counterclockwise direction
- Elliptical Path
- Orbits on the plane of the ecliptic

6. The Earth's Revolution around the Sun

Earth is nearest to the Sun at perihelion, which occurs on or near January 3.
Farthest away from the Sun at aphelion, on or near July 4. Distance between Sun and Earth varies only by about $\underline{3}$ percent during one revolution

MOTIONS OF THE MOON

Moon rotates on its axis and revolves about the Earth in the same direction as the Earth rotates and revolves around the Sun. Moon's rate of rotation synchronized with the Earth's rotation (one side of Moon permanently directed toward the Earth)

MOTIONS OF THE MOON

Phases of Moon determined by position of the Moon in its orbit around the Earth

- Determines how much of the sunlit Moon is seen from the Earth.
- 29.5 day cycle to go from one full Moon to the next

TILT OF THE EARTH'S AXIS

Earth's orbit around Sun plane of the ecliptic.

- Rotational axis remains pointed toward Polaris North Star
- Makes an angle of $661 / 2^{\circ}$ with the ecliptic plane.
- Axis of the Earth is tilted at $231 / 2^{\circ}$ away from a right angle to the plane of the ecliptic.

THE FOUR SEASONS

Four seasons occur because the Earth maintains a constant orientation (tilted 2312° with respect to the perpendicular to the plane of the ecliptic) as it revolves around the sun March equinox

THE FOUR SEASONS

December or winter

solstice - December 22

- North polar end of the Earth's axis leans at the maximum angle away from the Sun, $231 / 2^{\circ}$. -Southern hemisphere tilted toward the Sun, gets strong solar heating. -Reversed for June or summer solstice

THE FOUR SEASONS

Equinoxes occur between the solstice dates.
-Earth's axis is not tilted

- March equinox (vernal equinox in the northern hemisphere) - March 21
-September equinox (autumnal
-equinox) - September 23.
-Conditions both equinoxes are identical

EQUINOX CONDITIONS

Equinox - circle of
illumination passes through both poles

- Subsolar point is the equator
- All locations have 12 hours of sunlight , 12 hours of darkness

SOLSTICE CONDITIONS

Solstice ("sun stands still")
June 22, subsolar point is $231_{2}{ }^{\circ} \mathrm{N}$ (Tropic of Cancer)
Dec. 22, subsolar point is $231_{2}{ }^{\circ} S$ (Tropic of Capricorn)

SOLSTICE CONDITIONS

Latitude of the subsolar point marks the sun's declination which changes throughout the year

Chapter Review

1. The Shape of the Earth
2. Earth Rotation
3. The Geographic Grid
4. Map Projections
5. Global Time
6. The Earth's Revolution around the Sun
